Nonlinear Development and Secondary Instability of Traveling Crossflow Vortices

نویسندگان

  • Fei Li
  • Meelan M. Choudhari
  • Lian Duan
  • Chau-Lyan Chang
چکیده

Transition research under NASA’s Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable “sufficiently” accurate transition prediction and practical transition control for future vehicle concepts. This paper builds upon prior effort targeting the laminar breakdown mechanisms associated with stationary crossflow instability over a swept-wing configuration relevant to subsonic aircraft with laminar flow technology. Specifically, transition via secondary instability of traveling crossflow modes is investigated as an alternate scenario for transition. Results show that, for the parameter range investigated herein, secondary instability of traveling crossflow modes becomes insignificant in relation to the secondary instability of the stationary modes when the relative initial amplitudes of the traveling crossflow instability are lower than those of the stationary modes by approximately two orders of magnitudes or more. Linear growth predictions based on the secondary instability theory are found to agree well with those based on PSE and DNS, with the most significant discrepancies being limited to spatial regions of relatively weak secondary growth, i.e., regions where the primary disturbance amplitudes are smaller in comparison to its peak amplitude. Nonlinear effects on secondary instability evolution is also investigated and found to be initially stabilizing, prior to breakdown.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer

Crossflow-vortex-induced laminar breakdown in a three-dimensional flat-plate boundary-layer flow is investigated in detail by means of spatial direct numerical simulations. The base flow is generic for an infinite swept wing, with decreasing favourable chordwise pressure gradient. First, the downstream growth and nonlinear saturation states initiated by a crossflow-vortex-mode packet as well as...

متن کامل

Advanced Laminar Flow Control on a Swept Wing: Useful Crossflow Vortices and Suction (Invited)

Results of high-order direct numerical simulations are summarized for the evolution of crossflow disturbances in incompressible wing-generic boundary-layers with suction at the wall. The concept of smart suction, an adapted combination of the upstream-flow-deformation (UFD) technique and suction, is presented for laminar flow control. In the UFD technique, relatively tightly spaced, useful cros...

متن کامل

Transition mechanisms induced by travelling crossflow vortices in a three-dimensional boundary layer

The laminar breakdown induced by purely travelling crossflow vortices in a threedimensional flat-plate boundary-layer flow is investigated in detail by means of spatial direct numerical simulations. The base flow considered is generic for an infinite swept wing, with decreasing favourable chordwise pressure gradient and a sweep angle of 45◦. First, the primary downstream growth and nonlinear sa...

متن کامل

DNS of laminar-turbulent transition in swept-wing boundary layers

Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified sec...

متن کامل

Secondary instability of crossflow vortices

Crossflow-dominated swept-wing boundary layers are known to undergo a highly nonlinear transition process. In low-disturbance environments, the primary instability of these flows consists mainly of stationary streamwise vortices that modify the mean velocity field and hence the stability characteristics of the boundary layer. The result is amplitude saturation of the dominant stationary mode an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013